# Maximum Xor¶

## 1、题目描述¶

You are given an array $arr$ of $n$ elements. A list of integers,$queries$ is given as an input, find the maximum value of $queries[j]\oplus each\ arr[i]$ for all $0\le i\lt n$ , where represents xor of two elements.

Note that there are multiple test cases in one input file.

For example:

$arr = [3,7,15,10]$

$queries[j] = 3$

$3\oplus3=0,max=0$

$3\oplus7=4,max=4$

$3\oplus15=12,max=12$

$3\oplus10=9,max=12$

Function Description

Complete the maxXor function in the editor below. It must return an array of integers, each representing the maximum xor value for each element $queries[j]$ against all elements of $arr$.

maxXor has the following parameter(s):

• arr: an array of integers
• queries: an array of integers to query

Input Format

The first line contains an integer $n$ , the size of the array $arr$.

The second line contains $n$ space-separated integers,$arr[i]$ from $0\le i \lt n$.

The third line contain $m$ , the size of the array $queries$.

Each of the next $m$ lines contains an integer $queries[j]$ where $0\le j \lt m$.

Constraints

$1\le n,m \lt 10^{5}$

$0\le arr[i],queries[j]\le 10^{9}$

Output Format

The output should contain $m$ lines with each line representing output for the corresponding input of the testcase.

Sample Input 0

3
0 1 2
3
3
7
2


Sample Output 0

3
7
3


Explanation 0

$arr=[0,1,2]$

$queries[0]= 3$

$3\oplus 0=3,max=3$

$3\oplus 1=2,max=3$

$3\oplus 2=1,max=3$

$queries[1]=7$

$7\oplus 0=7,max=7$

$7\oplus 1=6,max=7$

$7\oplus 2=5,max=7$

$queries[2]=2$

$2\oplus 0=2,max=2$

$2\oplus 1=3,max=3$

$2\oplus 2=0,max=3$

Sample Input 1

5
5 1 7 4 3
2
2
0


Sample Output 1

7
7


Explanation 1

$arr=[5,1,7,4,3]$

$queries[0]=2$

$2\oplus 5=7,max=7$

$2\oplus 1=3,max=7$

$2\oplus 7=5,max=7$

$2\oplus 4=6,max=7$

$2\oplus 3=1,max=7$

$queries[1]=0$

$0\oplus 5=5,max=5$

$0\oplus 1=1,max=5$

$0\oplus 7=7,max=7$

$0\oplus 4=4,maa=7$

$0\oplus 3=3,max=7$

Sample Input 2

4
1 3 5 7
2
17
6


Sample Output 2

22
7


Explanation 2

$arr=[1,3,5,7]$

$queries[0]= 17$

$17\oplus 1=16,max=16$

$17\oplus 3=18,max=18$

$17\oplus 5=20,max=20$

$17\oplus 7=22,max=22$

$queries[1] = 6$

$6\oplus 1=7,max=7$

$6\oplus 3=5,max=7$

$6\oplus 5=3,max=7$

$6\oplus 7=1,max=7$

## 2、解题思路¶

• 使用前缀树
• 每一次尽量找与当前不相同路径
# !/bin/python3

import math
import os
import random
import re
import sys

class Trie:

def __init__(self):
"""
"""

def insert(self, num):
"""
Inserts a word into the trie.
:type word: str
:rtype: void
"""

num_str = bin(num)[2:].zfill(32)

for c in num_str:
cur = cur.setdefault(c, {})

cur["value"] = num

def get_max_xor(self, num):

num_str = bin(num)[2:].zfill(32)
for c in num_str:
if c == "0" and "1" in cur:
cur = cur["1"]
elif c == "1" and "0" in cur:
cur = cur["0"]
else:
cur = cur[c]
return num ^ cur["value"]

# Complete the maxXor function below.
def maxXor(arr, queries):
trie = Trie()
for n in arr:
trie.insert(n)

res = []
for q in queries:
res.append(trie.get_max_xor(q))

return res

# solve here

if __name__ == '__main__':
fptr = open(os.environ['OUTPUT_PATH'], 'w')

n = int(input())

arr = list(map(int, input().rstrip().split()))

m = int(input())

queries = []

for _ in range(m):
queries_item = int(input())
queries.append(queries_item)

result = maxXor(arr, queries)

fptr.write('\n'.join(map(str, result)))
fptr.write('\n')

fptr.close()